

SPRINT SMEs Project: Research in Software PRocessImprovemeNT Methodologies for

Greek Small & Medium sized Software Development EnterpriseS

Work Package 3 (WP3): Design of SPINT SMEs Knowledge Base

Deliverable 3.2 (D3.2): Design of SPRINT SMEs Knowledge Base

Scientific Coordinator / Project Leader:

Vassilis C. Gerogiannis, PhD, Associate Professor, Dept. of Business Administration,

Technological Education Institute of Thessaly, Greece

Authors:

 George Kakarontzas (WP3 Leader), PhD, Applications Professor, Computer Science and

Telecommunications Department, Technological Education Institute of Thessaly, Greece

 Ioannis Stamelos, PhD, Associate Professor, Dept. of Informatics, Aristotle University of

Thessaloniki, Greece

 Stamatia Bibi, PhD, Research Associate, Dept. of Informatics, Aristotle University of

Thessaloniki, Greece

 Leonidas Anthopoulos, PhD, Assistant Professor, Dept. of Business Administration,

Technological Education Institute of Thessaly, Greece

May, 2014

Research in SPRINT SMEs project is implemented through the Operational Program

"Education and Lifelong Learning" and is co-financed by the European Union (European

Social Fund) and Greek national funds in the context of the R&D program ARCHIMEDES III

Table of Contents

1. Introduction .. 1

2. Ontologies and Bayesian Networks for SPI ... 3

3. A Knowledge based approach for supporting SPI activities in SMEs . 5

4. Validation of the Approach .. 9

5. Conclusions .. 19

6. References–Bibliography ... 20

List of Figures

Figure 1: Software Process Ontology (Brinquette et al., 2011) 7

Figure 2: A BBN for software effort estimation ... 8

Figure 3: The extended software process ontology 11

Figure 4: A Bayesian Network for the software process ontology

presented in Figure 3 ... 12

Figure 5: A Bayesian Network for ISBSG data set 12

Figure 6: Software Process BN for effort estimation 16

Figure 7: Software Process BN for reusability ... 18

List of Tables

Table 1: The NPT of the node Maintenance Effort of Figure1 8

Table 2: Metrics of the knowledge base for the telecommunications

company with low and high metrics’ ranges. ... 14

Table 3: NPT for effort estimation ... 17

[1]

1. Introduction

Software Process Improvement (SPI) in the context of small medium-

sized software development enterprises (SMEs) is gaining momentum in

software engineering research (Pettersson et al., 2008). SPI is a

challenging endeavour for most software SMEs aiming at preventing

software project failures, reducing development costs and delivering

high-quality software products/services consistent with end-customers’

needs (Zahran, 1998). The importance of evaluation and improvement of

particular software process areas is recognized by most SMEs but the

lack of knowledge and resources prohibit SPI adoption and

implementation. Software SMEs are often characterized by insufficient

human resources, limited development and supporting environment and

lack of budget. Therefore, for most SMEs SPI is a major challenge

(Mishra & Mishra, 2009).

In this deliverable, a practical approach for supporting the

improvement of selected software process areas which take place in a

software SME is suggested. The approach is called SPRINT (Software

PRocess ImprovemeNT) SMEs and adopts an ontology-based knowledge

representation to capture the relevant data that describe a software

process. The representation of a process tacit knowledge, through the use

of a software process ontology, allows this knowledge to become

accessible and transferable. The software process ontology is then

represented and analysed in the form of a Bayes Network (BN) (Bibi &

Stamelos, 2004). By adopting the BN formalism we can gain useful

insight about the elements of the software process and perform post

mortem analysis. The use of BNs enables the estimation of process

measures (for example, process cost, quality or other measurable

artefacts) and adequately handles uncertainty. Thus, the BN process

representation can be used as a tool for experimenting with different

process changes and testing their effects. In particular, the SPRINT SMEs

approach consists of the following steps:

(i) Identification of software process areas of a SME and selection of

specific areas which require mprovement.

(ii) Definition of a knowledge base that describes a process area under

improvement.

(iii) Conceptualization and analysis of an ontology that represents the

process domain.

[2]

(iv) BN analysis and suggestions for process improvement.

The deliverable structure is organised as follows. Section 2 provides a

brief literature review on the use of ontologies and BNs for software

process representation and analysis. Section 3 describes the steps of the

SPRINT SMEs approach. Section 4 presents, as a proof of concept, a

hypothetical example of applying the approach by using a publicly

available data set (ISBSG). In the same section, the approach is validated

by considering the software development process that takes place in a

SME active in telecommunications area. Finally, in section 5, we

conclude the deliverable and present ideas for future work.

[3]

2. Ontologies and Bayesian Networks for

SPI

The concept of using BNs as predictive models in certain phases of

software process is found in several research studies. For example, BNs

have been used for handling uncertainty in defect prediction and software

quality modelling (Fenton et al., 2002; Fenton et al. 2007). Okutan &

Yildiz (2014) applies BNs to determine the probabilistic influential

relationships among defect metrics and fault proneness in open source

software projects. BNs have been applied for software cost estimation as

well. For example, Stamelos et al. (2003) defined an empirically derived

BN model for estimating the software development cost and evaluated it

on the COCOMO data set. BN models are also useful for estimating the

development cost of web applications (Mendes et al. 2007). A survey in

research studies using BN models software cost estimation can be found

in (Radlinski, 2010). As far as software process representation is

concerned, BNs were adopted by (Bibi et al., 2010) to model a

customized software development process in a case software company.

The process representation through the use of a BN allowed the

estimation of certain process aspects, such as defects and effort. BNs

were also applied for modelling general software processes, such as the

eXtreme Programming (XP) process (Abouelela & Benedicenti, 2010). In

addition, the effect of project management anti-patterns on solving

cooperation problems in a software development process has been

modelled and analysed with the use of BNs in (Settas et al., 2006).

On the contrary, there are rather fewer studies that suggest the use of

ontologies to represent a shared conceptualisation of a software process.

In (Liao et al., 2005) an OWL-based ontology is suggested for capturing

knowledge in software development processes. Falbo & Bertollo (2009)

proposed an ontology that was specified with the use of a UML profile to

define a vocabulary of concepts met in process quality models/standards,

such as ISO/IEC 12207 and CMMI. Barcellos and Falbo (2009)

reengineered a Software Enterprise Ontology based on the Unified

Foundational Ontology (UFO) suggested by Guizzardi et al. (2008).

These works were further extended by Brinquette et al. (2011) to address

[4]

the conceptualisation of activities which take place in software project

planning. Finally, Henderson et al. (2014) recently proposed an

ontological infrastructure for representing, in a unified way, the software

engineering standards developed under ISO/IEC SC7.

The SPRINT SMEs approach that is suggested in this deliverable

utilizes mainly the generic Software Process Ontology proposed in

(Brinquette et. al., 2011) with the aim to consider specific project, process

and experience concepts. Also in SPRINT SMEs ontology we propose

attributes that can be recorded to describe each of the above concepts

along with operations (actions) that can be performed for each concept.

Ontologies due to their deterministic nature are unable to adequately

capture uncertainty. Thus, we consider uncertainty dimensions in the

proposed software process ontology by synergizing the ontology with

BNs. The benefits of this combination are twofold:

 Process area knowledge is combined with probabilistic information.

The software process ontology offers a convenient framework to

model and disseminate knowledge regarding the development

process which incorporates uncertainty. BNs enable to analytically

measure and handle this uncertainty.

 Changes proposed by the ontology actions can be tested to view their

reflection to the process. Thus, the BN process model can be used by

project/process managers to illustrate the effect of process changes.

[5]

3. A Knowledge based approach for

supporting SPI activities in SMEs

The SPRINT SMEs approach follows a lightweight paradigm for

efficiently improving certain process areas in the context of a software

SME. The approach is tailored to the needs of individual SMEs as it is

efficient, easily adoptable, non bureaucratic and independent of

company’s specific assets. The approach follows four steps described in

the current section. It should be also noted that the SPRINT SMEs

approach presents commonalities with established SPI approaches (Paulk

et.al, 1994; ISO, 2013) and, in addition, offers a toolset (comprised by

ontologies and BNs) to assist their application.

The first step of the approach involves the identification of a defective

process area to be improved. The approach concentrates on supporting

the improvement of particular process areas and not the complete

software development process. We consider this decision more

effective/efficient when addressed to software SMEs since the effort

required to improve all aspects of a software process is often prohibitive

in terms of time and cost and most SMEs do not possess neither the

know-how nor the resources to achieve holistic improvement goals

(Pettersson et al., 2008). Defining the software process area that will be

set under assessment and improvement is a managerial decision that

depends on the needs of a specific SME and the type of projects that it

handles. For example, the area under improvement can be decided from

traditional software lifecycle models: requirements engineering, design

specification, programming and development, software testing, software

project management etc.

The target of the second step is to specify and design a knowledge base

that consists of information relevant to the knowledge required for

improving the area(s) selected in the previous step. A knowledge base is a

database that stores data and rules for knowledge management (Simari &

Rahwan, 2009). Knowledge management (KM) refers to the set of

practices adopted in an organisation to identify, create, represent,

distribute, and enable adoption of insights and experiences (Nonaka &

[6]

Krogh, 2009). Such insights and experiences comprise knowledge, either

embodied in individuals or embedded in organisations, such as processes

or practices (Thomas, 1993). Using a KM approach, the tacit knowledge

developed during the application of a software process is captured,

stored, disseminated and reused, so that to achieve better quality and

productivity. KM supports process management decisions, such as

software process definition, human resource allocation and effort

estimation of development activities as well as quality planning and

control (Falbo et al., 2004). In a SPI project, the process manager should

answer two main questions in order to create a knowledge base for the

software process (Bibi et al., 2010): (i) which metrics can provide useful

information for each particular process area? (ii) which projects will be

considered to create a process area knowledge base?

The relevant literature points out numerous metrics to describe

software processes (Kan, 2003). A well-known categorization of metrics

involves project, process, product and personnel oriented metrics

(Boehm, 1981). Regarding the projects that participate in the knowledge

base, the manager should, for example, select the most relevant ones to

the recent activity of the SME or the most recent ones. These project

types are suggested since the process followed in these projects is likely

to be repeated in the future. The manager should ensure that data of the

selected projects are objectively and consistently recorded. It should be

noted that the way to perform these types of activities (e.g. data

collection) is not precisely specified by the SPRINT SMEs approach,

since useful relevant guidelines are suggested by the generic SPI

approach (e.g., ISO/IEC 12207) in the context of which SPRINT SMEs

can be applied.

In the third step of the SPRINT SMEs approach we adopt an ontology-

based paradigm (Katifori et al., 2007). Ontologies formally represent

knowledge as sets of concepts within a domain by using a shared

vocabulary to denote the types, properties and interrelationships of those

concepts. Different complementary ontologies have to be developed to

address knowledge in software process improvement projects (i.e., tacit

and explicit knowledge, knowledge about projects, knowledge in projects

and knowledge from projects). A generic structure of the software

process ontology has been proposed by Brinquette et al. (2011) and it is

depicted in Figure 1.

[7]

Figure 1: Software Process Ontology (Brinquette et al., 2011)

The SPRINT SMEs approach suggests three sub-ontologies to develop

for covering three process improvement knowledge domains,

respectively:

 Experience ontology: The experience ontology describes skills and

qualifications required for performing specific improvement

practices.

 Process ontology: The process ontology enables the definition of a

hierarchical process structure and alternative process decompositions

and dependencies.

 Project content ontology: The project content ontology supports the

representation of information about the improvement of the project

content which includes project artefacts (e.g. requirements artefacts,

UML diagrams, source code components, etc.).

In the fourth step, the SPRINT SMEs approach utilises BNs to

experiment with the ontologies defined in the previous step. A BN is a

directed acyclic graph that represents a causal network consisting of a set

of nodes and a set of directed links between them, in a way that they do

not form a cycle (Jensen & Nielsen, 2007). Each node in a BN represents

a random variable that can take discrete or continuous, mutually

exclusive values according to a probability distribution, which can be

different for each node. Each link in a BN represents a probabilistic

cause-effect relation between the linked variables and it is depicted by an

arc starting from the influencing variable (parent node) and terminating

on the influenced variable (child node). The strength of the dependencies

is measured by means of conditional probabilities depicted in the form of

Node Probability Tables (NPTs).

[8]

BNs are helpful in software process evaluation and improvement since

they offer (Bibi et al., 2010): i) a way to represent project/process

attributes and identify their interrelationships, ii) capabilities for

performing multiple attribute estimations, iii) results indicating

confidence of the estimations, iv) solutions that can be easily interpreted

and confirmed by intuition, and v) analytical methods that can be used

alone or combined with expert judgment.

Figure 2: A BBN for software effort estimation

Table 1: The NPT of the node Maintenance Effort of Figure1

NofClasses Low High

Maintenance Effort Low 0.7 0.45

High 0.3 0.55

A simple BN example is presented in Figure 2. The model consists of

two nodes. The first node (NofClasses) represents the number of classes

in a software package and the second node (Maintenance Effort)

represents the effort required for package maintenance. We consider that

the values of these two nodes fall into two discrete categories (Low and

High). For the node NofClasses, Low values range between 1 class and

10 classes, while High values represent packages with more than 10

classes (30 classes the most). For the node MaintenanceEffort, Low

values range from 1 man month to 3 man months, while High values

range from more than 3 man months up to 10 man months. A simple

example to comprehend the NPT presented in Table 1 is the following: If

the number of classes falls in the low category then there is 70%

probability that the maintenance effort will also fall in the low category.

[9]

4. Validation of the Approach

4.1 Validation based on ISBSG data set

In this section we will present, as a proof of concept, a hypothetical

example of applying the suggested approach. In the first step

(identification of the area under improvement), we isolate project

planning phase as the target of improvement attempts. During project

planning, the project objectives are defined along with the project

schedule and its activities. People to perform the project activities have to

be allocated. Also project monitoring and control should be performed.

This involves tracking the accomplishment of project activities and

managing the necessary time to perform them. In particular, software

project planning involves activities such as:

 Project process selection: This might involve the selection of a

standard process such as RUP, SCRUM, ICONIX, XP or even hybrid

methods that fit the particular needs of a specific company (Kruchten

et al., 2003).

 Resource allocation: This task involves the selection of the

development team, the allocation of people to tasks. Also in this task

the selection of the necessary software tools and hardware

equipments is performed.

 Project monitoring and controlling: They involve the necessary

estimations relevant to the effort or the productivity required to

complete a software project.

The next step is to define a knowledge base relevant to the process area

under improvement. In order to create such a knowledge base, SMEs are

advised to use their own empirical data coming from historical projects. If

such data are not available, we can use publicly available data such as

those coming from the ISBSG (International Software Benchmarking

Standards Group) repository (www.isbsg.org), at least as a starting point

until company-specific data are available. In the following, we will use

metrics and data coming from ISBSG database. It is highly possible that a

company that desires to estimate several aspects of software development

will not possess a sufficient quantity of its own data. Therefore, using

cross company data can be a starting point to manage and estimate a

software development process.

The ontology of Figure 1 describes a general procedure to define a

software process for a company’s project. The project manager should

identify the activities that have to be performed to achieve the project

http://www.isbsg.org/

[10]

goals. This is done by tailoring organizational standard processes, taking

the project particularities and team features into account. The project

process is the basis for the further project management activities. After

defining the process, the project manager creates the network of project

activities, define how long each activity will last, and allocate people to

perform them. For a good understanding of these tasks, we need a shared

conceptualization regarding software processes.

The generic ontology of Figure 1 is further extended to include process

attributes and operations. Figure 3 depicts the class diagram of this

extended ontology. In Figure 3, the class Software Process consists of

certain attributes like Size, Effort, Complexity and Quality. The

operations encapsulated in this class are Planning, Scoping, Assessing,

Deciding, Measuring, Monitoring and Improving. The class Standard

Process is associated with the metrics that show conformance to RUP,

ICONIX or XP process models, while the class Project Process represents

the use of a customized variation of these standard processes for a

specific project. The class Organization is represented by metrics

describing each individual SME. Such metrics may include the Size of

the Organization, the Years of Experience and the Organization Type.

The class Project defines project specific metrics, such as Development

Type and Business Area Type. The Activity class represents standard

activities performed in software development like Planning,

Specification, Design, Build, Implementation and Testing. Depending on

what area of project planning has to be improved, the Activity class may

represent the relevant quality metrics for each activity or effort metrics

(Deliverables, Milestones, etc.) for each activity. The class Human

Resource is associated with metrics, such as Personnel skills and Roles

for the Project Staff subclass or Expertise for the Manager subclass, while

the class Software Resource is associated with metrics such as Use of

Case Tools, Programming Language and Data Base. Finally, the class

Hardware is associated with metrics, such as the Development Platform

and the Architecture type.

Based on the instantiation of the ontology concepts presented in Figure

2, we apply BNs to experiment with the ontology data and find

relationships among them. The aim of this step is to gain insights about

how the project planning process can be improved. For this reason, we

replace each class defined in the ontology class diagram of Figure 3 by

relevant metrics derived from the ISBSG data set or we can use

complementary metrics, if needed. Figure 4 shows the resulted BN

model. BN tools (e.g., webdocs.cs.ualberta.ca/~jcheng/bnsoft.htm) can be

helpful to redefine and analyse the structure of the BN model based on

data derived from real projects. Data analysis results in probability tables

[11]

that show how each node affects the neighbour ones. Certain inferences

can show how changes in the values of a metric affect values of another

metric and, finally, reach conclusions regarding good and bad practices in

software project planning.

Figure 5 shows an instance of the BN that is instantiated with data

derived from the ISBSG data base. This network was trained using actual

data from 124 projects for which the activity phase effort data were

recorded. Each node is accompanied by a Node Probability Table (NPT)

that estimates its values according to the values of the parent node. The

total effort value for all activities is dependent on the build and test effort.

The implementation effort is mainly affected by the design effort.

Let assume, for example, that the manager’s aim is to test situations

under which the development effort has low values. In the BN of Figure 5

the evidence of low effort values can be inserted in the node

SummaryWork Effort. The value of work effort will be minimized and,

therefore, the values of the rest of the nodes will be altered to suit that

inference. For example, low total effort values require relatively average

effort values during planning and specification phases and low values

during building and implementation phases. In this way, the manager is

able to analyse the effect of such a conclusion. He/she can test in future

projects whether high effort values in planning and specification phases

can reduce the effort required during building and implementation phases.

Figure 3: The extended software process ontology

[12]

Figure 4: A Bayesian Network for the software process ontology

presented in Figure 3

Figure 5: A Bayesian Network for ISBSG data set

[13]

4.2 Validation based on company specific data

In the following, we present an example of applying the SPRINT SMEs

approach in a case study that took place in a Greek SME running projects

in software telecommunications field. The study lasted one week. The

company occupies almost 35 employees mainly scientific, technical and

management personnel. In the case study we have followed the SPRINT

SMEs approach to evaluate the company’s project management and

process improvement decisions. The first step was to identify the process

areas that needed further support. For this reason, we interviewed three

company’s employees (project managers) with at least 5 years experience

covering all aspects of company’s activities. The employees pointed two

areas of interest, namely effort/duration estimation and software reuse.

The second step was to develop a knowledge base that included all

relevant information regarding the aforementioned process areas of

interest. After the interviews, we selected to record metrics that are

company specific and relevant to the telecommunication software that the

company develops and also more general metrics, such as effort and size

metrics. Then, we selected the historical projects that would participate in

the analysis to define the required process models. We selected five

recent projects that the managers considered more indicative of the

current activity of the company. These projects offered information that

could be retrieved even if we had to perform post-mortem analysis. The

data that were collected involved software process, product and

implementation metrics and they are presented in Table 2.

[14]

Table 2: Metrics of the knowledge base for the telecommunications

company with low and high metrics’ ranges.

Variable Min Categories

LOC Lines of Code L(≤12105),H(>12105)

Duration # of months L(≤9.5), H(>9.5)

Effort # of months L(≤5.50), H(>5.5)

P1Duration Analysis & design phase, man

months

L(≤4.5),H(>4.5)

P1Effort man months L(≤5),H(>5)

P2Duration Coding & testing phase, man

months

L(≤5),H(>5)

P2Effort man months L(≤3.5),H(>3.5)

TeamSize # of people in the project L(≤2),H(>2)

Reuse % of reusage of previous project

products

L(≤25%), H(>25%)

[15]

Reusability % of the project products reused L(≤35%), H(>35%)

TN_B # of Blocks L(≤3),H(>3)

TN_P # of Processes L(≤14),H(>14)

TN_ST # of States L(≤54),H(>54)

TN_PT # of Process Types L(≤1), H(>1)

TN_SYS (# of Systems L(≤0), H(>1)

TN_TMR # of Timers L(≤15), H(>15)

TN_BT # of Block Types L(≤0),H(>0)

TN_T # of Data Types L(≤0),H(>0)

TN_G # of Gates L(≤23),H(>23)

TN_CH # of Channels L(≤0),H(>0)

TN_BIP # of Built in Procedures L(≤8), H(>8)

TN_Ent_VS # SDL Entities with Valid Suffix L(≤49), H(>49)

TN_Ent_IS # SDL Entities with Invalid Suffix L(≤38), H(>38)

[16]

The third step resulted in a process ontology that represented the

targeted improvement areas (effort/duration estimation and software

reuse). To implement this step we have used parts of the ontology

described in Figure 3. In general, for the ontology creation there can be

several alternative solutions for each specific company. Therefore, we

have used the generic ontology presented in Figure 3, as it is difficult for

an SME to create its own process ontology from scratch. This generic

ontology can be modified according to the needs of a specific company.

The fourth step was to design appropriate BNs based on the ontological

representation of the knowledge base. To ensure better readability and

clarity of the results, two BN models were created, one involving the

effort estimation process and another one involving the software reuse

process. The first BN is presented in Figure 6.

Figure 6: Software Process BN for effort estimation

In the BN of Figure 6 network nodes are shown as bar charts providing

additional information for the data allocation at each node. This BN

model demonstrated the following assertions: The total effort value

mainly depends on the effort of the first development phase of a process

that is often followed in the company’s projects (P1Effort) and on the

Lines of Code (LOC) written, apart from code written in Specification

and Description Language (SDL). The company develops software using

a mix of (i) graphical development with the use of SDL

telecommunication modelling language and tools that execute directly the

SDL models and (ii) programming in C language. The Lines of Code are

affected by the percentage of reuse from previous projects which affects

intuitively also the size of the development team. Larger teams produce

more Lines of Code. A large percentage of reuse can reduce the actual

number of new lines of code and the total effort value. The effort of the

second development phase (P2Effort) that is followed in the company’s

[17]

projects mainly depends on TNL (Total Number of Lines) that

correspond to lines written in SDL. The value of TNL is also affected by

the percentage of reuse.

The NPT (Node Probability Table) of the node effort in the BN of

Figure 6 is presented in Table 3. This table can be used for the estimation

of the total effort required for the completion of a new project in the

company. The total development effort of a new project is estimated to be

high (second category) with probability 64% when the effort required for

the first development phase is high and the number of Lines of Code is

also high.

Table 3: NPT for effort estimation

P1Effort X1 X2

LOC X1 X2 X1 X2

X1 0,75 0,42 0,36 0,31

X2 0,25 0,58 0,64 0,69

A second BN model (Figure 7) was developed during the case study to

analyse the company’s software reuse process. A more conventional

format is selected in Figure 7 to show this BN (nodes are depicted with

icons). This model indicated that the variable ΤΝ_PT (Total Number of

process types) actually affects the values of other code structure

variables, such as the number of block types and the number of gates

(these are all SDL specific metrics). According to the BN of Figure 7, the

percentage of code from a particular project that can be reused is affected

by the number of entities with invalid suffix, i.e., inappropriate naming

choices (TN_Ent_IS). This result indicated that reuse heavily depends on

the formality that the programmers adapt when naming the entities on the

code. This intuitively affects the understandability of the code that

enables further reuse.

Post-mortem analysis was applied on the BN model of Figure 7 and

resulted in the following useful insights: The lower the number of code

[18]

structure variables the greater the reuse. It seems that smaller parts of

code can be more easily reused. According to the company’s

management, future projects are possible to breakdown to smaller

autonomous packages that could perform different aspects of

functionality. This decomposition would enable greater percentage of

reuse. The company’s management so far preferred the use of smaller

teams, while there is also the possibility of using larger ones. The idea

was that small teams can be more flexible, communicate better and

produce more quickly results. It seems though from the analysis results

that larger teams can produce results in shorter time and they are able to

reuse larger percentage of code from previous projects. The management

re-considered the initial opinion on utilisation of smaller teams and

currently is validating the experimental results on larger teams.

Figure 7: Software Process BN for reusability

[19]

5. Conclusions

This deliverable presented an approach to support software process

improvement activities for software development SMEs. The approach

takes into consideration the characteristics and the needs of the individual

software organization under assessment and does not demand a large

amount of resources and investment costs. The approach utilizes a

generic ontology that is tailored to the needs of an SME and applies

Bayesian network analysis to make measurable each concept that is

represented in the process ontology. As a proof of concept, we have

presented the approach application in a hypothetical project planning

process by using publicly available project data derived from the ISBSG

repository. The deliverable also presented the approach validation in a

case study aimed to improve software effort estimation and reuse in a

company that delivers hardware/software solutions in the

telecommunications area. As future work the proposed approach will be

further validated at a multiple case study involving Greek software

SMEs, which show interest in improving their development practices and

changing their role from bespoke to market-driven software product

developers.

[20]

6. References–Bibliography

Abouelela, M. and Benedicenti, L., 2010. Bayesian Network based XP Process

Modelling, IJSEA Journal, 1(3), 1-15.

Barcellos, M. P., Falbo, R. A., 2009. Using a Foundational Ontology for

Reengineering a Software Enterprise Ontology. In Advances in Conceptual

Modeling - Challenging Perspectives, Lecture Notes in Computer Science 5833,

179-188.

Bibi, S. Stamelos, I., Gerolimos, G., Kollias, V., 2010. BBN based Approach for

Improving the Software Development Process of an SME - a Case Study, Journal

of Software Maintenance, 22(2).

Bibi, S., Stamelos, I., 2004. Software Process Modeling with Bayesian Belief

Networks. In Proceedings of 10th International Software Metrics Symposium

(Metrics 2004), Chicago.

Boehm, B., 1981. Software Engineering Economics, Englewood Cliffs, Prentice-Hall.

Bringuente, A., Falbo, A., Guizzardi, G., 2011. Using a Foundational Ontology for

Reengineering a Software Process Ontology, Journal of Information and Data

Management, 2(3), 511-526.

Falbo, R., Bertollo, G., 2009. A software process ontology as a common vocabulary

about software processes, International Journal of Business Process Integration

and Management (IJBPIM), 4(4), 239-250.

Falbo, R., Borges, L. S. M., Valente, F. F. R., 2004. Using Knowledge Management

to Improve Software Process Performance in a CMM Level 3 Organization. In

Proceedings of the International Conference on Quality Software (QSIC 2004),

162-169.

Fenton, N., Krause, P., Neil, M., 2002, Probability modeling for software quality

control, Journal of Applied Non-Classical Logics, 12(2), 173-188.

Fenton , N., Neil, M., Marsh, W. , Hearty,P., Marquez,D., Krause,P., Mishra, R.,

2007. Predicting Software Defects in varying Development Lifecycles using

Bayesian Nets, Information & Software Technology 49(1), 32-43.

Guizzardi, G., Falbo, R. A., Guizzardi, R. S. S., 2008. Grounding Software Domain

Ontologies in the Unified Foundational Ontology (UFO): the Case of the ODE

Software Process Ontology. In Proceedings of the XI Iberoamerican Workshop on

Requirements Engineering and Software Environments, 244-251.

Henderson-Sellers,B., Gonzalez-Perez, C., Mc Bride,T. Low, G., 2014. An ontology

for ISO software engineering standards: 1) Creating the infrastructure, Computer

Standards & Interfaces, 36(3), 563-576.

International Organization for Standardization / International Electrotechnical

Commission, 2013. ISO/IEC FDIS 26550: Software and Systems Engineering -

Reference Model for Product Line Engineering and Management.

Jensen F., Nielsen, T., 2007. Bayesian Networks and Decision Graphs, Springer

Verlag.

Kan, S., 2003. Metrics and Models in Software Quality Engineering, Pearson

Education Limited.

[21]

Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E., 2007.

Ontology Visualization Methods - a Survey, ACM Computing Surveys, 39(4).

Kruchten, P., 2003. The Rational Unified Process: an Introduction, Addison-Wesley.

Liao, L., Qu, Y., Leung, H. K. N., 2005. A Software Process Ontology and its

Application. In Proceedings of the First International Workshop on Semantic Web

Enabled Software Engineering.

Mendes, E., 2007. The Use of a Bayesian Network for Web Effort Estimation. In

Proceedings of the International Conference on Web Engineering (ICWE 2007),

90-104.

Mishra, D., Mishra, A., 2009. Software Process Improvement in SMEs: a

Comparative View, Computer Science and Information Systems, 6(1), 111-140.

Nonaka, I., Krogh, G., 2009. Tacit Knowledge and Knowledge Conversion:

Controversy and Advancement in Organizational Knowledge Creation Theory,

Organization Science, 20 (3), 635–652.

Okutan, A., Yildiz, O., 2014. Software Defect Prediction using Bayesian networks,

Empirical Software Engineering, 19(1), 154-181.

Paulk, M., Curtis, B., Chrissis, B., Weber,M., 1994. Capability Maturity Model for

Software: Guidelines for Improving the Software Process, Addison-Wesley.

Pettersson, F., Ivarsson, M., Gorsheck, T., Ohman, P., 2008. A Practitioner's Guide to

Lightweight Software Process Assessment and Improvement Planning, Journal of

Systems and Software, 21(6), 972-995.

Radlinski, L., 2010. A Survey of Bayesian Net Models for Software Development

Effort Prediction, International Journal of Software Engineering and Computing,

2(2), 95-109.

Settas, D., Bibi, S., Sfetsos, P., Stamelos, I., Gerogiannis, V. C., 2006. Using

Bayesian Belief Networks to Model Software Project Management Antipatterns. In

Proceedings of the Fourth International Conference on Software Engineering,

Research, Management and Applications (SERA 2006), Seattle, 117-124.

Simari, G., Rahwan, I., 2009. Argumentation in Artificial Intelligence, Springer.

Stamelos, I., Angelis, L., Dimou, P., Sakellaris,E., 2003. On the Use of Bayesian

Belief Networks for the Prediction of Software Productivity, Information and

Software Technology, 45(1), 51-60.

Thomas R., 1993. A Translation Approach to Portable Ontology Specifications,

Knowledge Acquisition, 5(2), 199–220.

Zahran, S., 1998. Software Process Improvement: Practical Guidelines for Business

Success. Addison-Wesley.

